Development of a PBPK model to quantitatively understand absorption and disposition mechanism and support future clinical trials for PB‐201

Author:

Zhang Miao12ORCID,Lei Zihan1,Yu Ziheng13,Yao Xueting1,Li Haiyan14,Xu Min5,Liu Dongyang1ORCID

Affiliation:

1. Drug Clinical Trial Center Peking University Third Hospital Beijing China

2. Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences University at Buffalo, The State University of New York Buffalo New York USA

3. Department of Obstetrics and Gynecology Peking University Third Hospital Beijing China

4. Department of Cardiology and Institute of Vascular Medicine Peking University Third Hospital Beijing China

5. PegBio Co., Ltd. Suzhou Jiangsu China

Abstract

AbstractPB‐201 is the second glucokinase activator in the world to enter the phase III clinical trials for the treatment of type 2 diabetes mellitus (T2DM). Combined with the efficacy advantages and the friendly absorption, distribution, metabolism, and excretion characteristics, the indication population of PB‐201 will be broad. Because the liver is the primary organ for PB‐201 elimination, and the elderly account for 20% of patients with T2DM, it is essential to estimate PB‐201 exposure in specific populations to understand the pharmacokinetic characteristics and avoid hypoglycemia. Despite the limited contribution of CYP3A4 to PB‐201 metabolism in vivo, the dual effects of nonspecific inhibitors/inducers on PB‐201 (substrate for CYP3A4 and CYP2C9 isoenzymes) exposure under fasted and fed states also need to be evaluated to understand potential risks of combination therapy. To grasp the unknown information, the physiologically‐based pharmacokinetic (PBPK) model was first developed and the influence of internal and external factors on PB‐201 exposure was evaluated. Results are shown that the predictive performance of the mechanistic PBPK model meets the predefined criteria, and can accurately capture the absorption and disposition characteristics. Impaired liver function and age‐induced changes in physiological factors may significantly increase the exposure under fasted state by 36%–158% and 48%–82%, respectively. The nonspecific inhibitor (fluconazole) and inducer (rifampicin) may separately increase/decrease PB‐201 systemic exposure by 44% and 58% under fasted state, and by 78% and 47% under fed state. Therefore, the influence of internal and external factors on PB‐201 exposure deserves attention, and the precision dose can be informed in future clinical studies based on the predicted results.

Publisher

Wiley

Subject

Pharmacology (medical),Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3