Microwave–vacuum extraction cum drying of tomato slices: Optimization and functional characterization

Author:

Alvi Tayyaba12ORCID,Khan Muhammad Kashif Iqbal23ORCID,Maan Abid Aslam23,Rizwan Muhammad4,Aamir Muhammad2,Saeed Farhan5ORCID,Ateeq Huda5ORCID,Raza Muhammad Qasim5,Afzaal Muhammad5,Shah Mohd Asif67ORCID

Affiliation:

1. Department of Biological Systems Engineering Washington State University Pullman Washington USA

2. National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan

3. Department of Food Engineering University of Agriculture Faisalabad Pakistan

4. Faculty of Science and Technology University of Central Punjab Lahore Pakistan

5. Department of Food Science Government College University Faisalabad Faisalabad Pakistan

6. Department of Economics, College of Business and Economics Kebri Dehar University Kebri Dehar Ethiopia

7. Division of Research and Development Lovely Professional University Phagwara India

Abstract

AbstractFruits and vegetables have shorter shelf life due to their perishable nature. Tomato, being a nutritionally rich fruit needs to be preserved for a longer period. In this context, this study was designed to dry the tomato slices through microwave–vacuum drying. This process was optimized for moisture ratio and drying rate using response surface methodology (RSM). The process was investigated at different power levels (30, 50, 80, and 100 W), pressure (0, 15, 20, and 25 inHg), and time (0, 4, 6, and 10 min) using Box–Behnken design. Results indicated that color, energy efficiency, and drying characteristics were significantly affected by changing power, vacuum levels, and processing time. Besides, nine mathematical models were applied on experimental data to deeply understand the moisture ratio of tomato slices. Amongst, Midilli model was found best to describe the drying process at 100 W and 25 inHg supported by R2 (0.9989), RMSE (0.001), and X2 (1.34e−4). This study was focused on finding the optimal combinations of power, vacuum pressure, and time for better drying and reduced wastage of the fruit owing to its perishable nature. From all the microwave powers, higher microwave power and vacuum level showed better energy consumption, energy efficiencies, color retention, and rehydration capacity.

Publisher

Wiley

Subject

Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3