Transcriptomics and cell painting analysis reveals molecular and morphological features associated with fed‐batch production performance in CHO recombinant clones

Author:

Nelson Luke1,Veling Mike1,Farhangdoust Fatemeh1,Cai Xuezhu1,Huhn Steve1ORCID,Soloveva Veronica1,Chang Meiping1ORCID

Affiliation:

1. Merck & Co., Inc. Rahway New Jersey USA

Abstract

AbstractStable, highly productive mammalian cells are critical for manufacturing affordable and effective biological medicines. Establishing a rational design of optimal biotherapeutic expression systems requires understanding how cells support the high demand for efficient biologics production. To that end, we performed transcriptomics and high‐throughput imaging studies to identify putative genes and morphological features that underpin differences in antibody productivity among clones from a Chinese hamster ovary cell line. During log phase growth, we found that the expression of genes involved in biological processes related to cellular morphology varied significantly between clones with high specific productivity (qP > 35 pg/cell/day) and low specific productivity (qP < 20 pg/cell/day). At Day 10 of a fed‐batch production run, near peak viable cell density, differences in gene expression related to metabolism, epigenetic regulation, and proliferation became prominent. Furthermore, we identified a subset of genes whose expression predicted overall productivity, including glutathione synthetase (Gss) and lactate dehydrogenase A (LDHA). Finally, we demonstrated the feasibility of cell painting coupled with high‐throughput imaging to assess the morphological properties of intracellular organelles in relation to growth and productivity in fed‐batch production. Our efforts lay the groundwork for systematic elucidation of clone performance using a multiomics approach that can guide future process design strategies.

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3