Affiliation:
1. State Key Laboratory of Crop Stress Biology for Arid Areas Northwest A&F University Yangling 712100 China
2. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection Northwest A&F University Yangling 712100 China
Abstract
AbstractPlant cell walls are composed of polysaccharides such as cellulose, hemicelluloses, and pectins, whose location and function differ depending on plant type. UDP‐Ara mutases (UAMs) have been reported to play important roles in plant development and response to various plant stresses (abiotic and biotic). However, little work has been reported on UAM in wheat. In this study, we dissected the role of the UAM family member, UAM3, during the interaction between wheat and the stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst), and in response to treatment with salicylic acid (SA). RNA interference (RNAi)‐based stable silencing of TaUAM3 resulted in decreased resistance to Pst fungus. In addition, CRISPR‐mediated genome editing (GE) of TaUAM3 enhanced the susceptibility of wheat to Pst or compromised disease resistance accompanied by increased fungal growth and decreased H2O2 production in plant tissues. Moreover, the transcript levels of pathogenesis‐related (PR) genes and reactive oxygen species (ROS)‐generating genes were down‐regulated in both the RNAi‐silenced and CRISPR‐edited plants, while the ROS‐scavenging gene, TaCAT3, was up‐regulated. Therefore, TaUAM3 positively regulates the resistance of wheat to Pst.
Funder
National Natural Science Foundation of China
Subject
Agronomy and Crop Science,Renewable Energy, Sustainability and the Environment,Food Science,Forestry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献