Rapid in‐situ aerobic biodegradation of high salt and oily food waste employing constructed synthetic microbiome

Author:

Xu Song12,Tao Lidan12,Wang Jingjing12,Zhang Xiaoxia12,Huang Zhiyong12

Affiliation:

1. Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Tianjin China

2. National Technology Innovation Center of Synthetic Biology Tianjin China

Abstract

AbstractThe high salt content of food waste (FW) severely limits microbial physiological activity and reduces its biodegradability. In this study, a salt‐tolerant thermophilic bacterial agent that consists of four different substrate degradation functional strains was evaluated for efficient high salt and oily FW in solid‐state aerobic biodegradation disposers. The phy‐chemical properties, enzyme activities, microbial community structure, and function during the biodegradation process were evaluated under high salt (5%) stress. The results showed that the agent promoted the degradation rate, increased the matrix temperature, decreased the moisture content (MC), and enhanced enzyme activities without putrid smell. High‐throughput sequencing indicated community structure succession between different groups and the positive contribution of the inoculated functional strains. During the FW biodegradation process, the Bacillus sp. inoculated was the dominant genus in the agent group. Furthermore, CCA further confirmed the positive effects of the four inoculated strains on high salt and oily FW aerobic biodegradation. Functional prediction and metabolite results both confirmed that the agent was more efficient in carbon, amino acid, and lipid metabolism, which demonstrated that the synthetic microbial consortium holds a potential advantage for efficiency and subsequent resource utilization for organic fertilizer.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Bioengineering,Environmental Engineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3