Insights on Lipid Biodegradation in Domestic Biodegradable Waste at a Full-scale Black Soldier Fly Larvae (Hermetia illucens L.) Bioconversion

Author:

Fan Shilin1,Ma Jingjin1,Jiang Shuoyun1,Khan Faw2,Xiang FA1,Zhijian zhang1

Affiliation:

1. Zhejiang University

2. MNS-University of Agriculture: Muhammad Nawaz Shareef University of Agriculture

Abstract

Abstract The lipids in the domestic biodegradable waste (DBW) pose a challenge to resource regeneration, and few studies have examined the evolution of lipid profiles during the process of black soldier fly larvae (Hermetia illucens L., BSFL) bioconversion. This study aimed to explore the dynamic features of lipid fraction and their associated responses of microbial community succession in residue during a full-scale BSFL bioconversion. Data showed that the lipid content decreased by95%, while the seed germination index increased by 20% through the synergistic effects of BSFL and microbiota. The results of spectral and Gas chromatography-mass spectrometry showed that free fatty acids and medium-chain fatty acids were given first priority in degrading in larval and microbial coexistence systems, resulting in the relative accumulation of sterols. The lipid content (71.1%, P = 0.002) was the prime environmental factor that promoted the succession of the bacterial community. The diversity and structure of the bacterial community varied at different stages of the bioprocess, where BSFL induced Corynebacterium, Marinobacter, and Brevibacterium. EC: 4.2.1.17 (Enoyl-CoA hydratase) and EC: 1.1.1.35 (3-hydroxyacyl-CoA dehydrogenase) were the key lipid metabolic enzymes, promoting the degradation and transformation of materials and lipids. The synergistic effect of BSFL and microbiota promotes lipid metabolisms in DBW, which is conducive to the sustainable utilization of BSFL biotechnology to convert wastes into high-value resources.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3