Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability

Author:

Hasanovic Amra1,Zehl Martin2,Reznicek Gottfried2,Valenta Claudia

Affiliation:

1. Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria

2. Department of Pharmacognosy, University of Vienna, Vienna, Austria

Abstract

Abstract Objectives The aim of the present study was to create a skin delivery system based on chitosan-tripolyphosphate nanoparticles for aciclovir with enhanced chemical stability. Methods Nanoparticles were formed spontaneously using ionotropic gelation with tripolyphosphate. Two different sizes of aciclovir-loaded nanoparticles were characterised in terms of zeta potential, particle size and polydispersity index. Key findings Standard diffusion experiments using Franz-type diffusion cells showed reasonable skin permeability that depended on particle size and chitosan content. The larger the nanoparticle, having a higher chitosan content, the better the aciclovir permeation through porcine skin. Differential scanning calorimetry studies showed a remarkable decrease in the typical transition temperature, indicating an interaction between skin lipid bilayer and the nanoparticles. Moreover, the chemical stability of aciclovir was significantly increased by the nanoparticle system. After the observation period of 5 weeks, aciclovir incorporated into nanoparticles had undergone photo-oxidation to a significantly lower extent than pure aqueous solution. This degradation product of aciclovir was analysed using LC/MS, and its identity established. Conclusions These studies demonstrate that incorporation of aciclovir into chitosan-tripolyphosphate nanoparticles significantly improves its chemical stability. Moreover, skin diffusion studies in vitro showed improved permeation of aciclovir from the nanoparticle system, especially from nanoparticles with higher chitosan content.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3