Growth, Yield, and Postharvest Attributes of Glasshouse Tomatoes Produced under Deficit Irrigation

Author:

Pulupol Lucio U.,Behboudian M. Hossein,Fisher Keith J.

Abstract

In glasshouse-grown tomatoes (Lycopersicon esculentum Mill. `Virosa'), deficit irrigation (DI), in which plant water potential was allowed to decrease from –0.5 to –1.2 MPa, reduced plant growth and fruit yield, size and count, and caused blossom-end rot. Deficit-irrigated fruit had higher color intensity, lower water content, and higher concentration of sucrose, glucose, and fructose than well-watered (control) fruit. Fruit concentrations of Ca, Mg, and K were the same for both treatments on a dry weight basis, but they were higher in DI fruit than in control fruit on a fresh weight basis. Fruit gas exchange was measured for two 30-day-apart harvests. For both harvests, DI fruit produced higher quantities of CO2 and ethylene than control fruit. Ethylene and CO2 production peaks coincided for the first harvest in both treatments. In the second harvest, the CO2 production peak preceded that of ethylene. Despite yield reduction, DI enhanced fruit desirability in terms of higher concentration of soluble sugars and higher color intensity.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3