Canopy Light Effects in Multiple Training Systems on Yield, Soluble Solids, Acidity, Phenol and Flavonoid Concentration of ‘Frontenac’ Grapes

Author:

Bavougian Christina M.1,Read Paul E.1,Schlegel Vicki L.2,Hanford Kathryn J.3

Affiliation:

1. 1Department of Agronomy and Horticulture, University of Nebraska—Lincoln, 377 Plant Science Hall, Lincoln, NE 68583-0724

2. 2Department of Food Science and Technology, University of Nebraska—Lincoln, 326 Food Industry Complex, Lincoln, NE 68583-0919

3. 3Department of Statistics, University of Nebraska—Lincoln, 343A Hardin Hall North, Lincoln, NE 68583-0963

Abstract

Phenolic compounds contribute greatly to the sensory attributes of wine and have a wide range of human health benefits as well. In this study, four trellis/training systems were evaluated for effects on fruit-zone light environment, fruit chemical composition (including phenol and flavonoid concentrations), and yield of ‘Frontenac’ grapes (Vitis sp. MN 1047) grown in southeastern Nebraska over two growing seasons. Photosynthetically active radiation (PAR) was measured above the canopy and within the fruiting zone at berry set, veraison, and harvest. Point quadrat canopy analysis was performed at veraison. Both bound and free (unbound) flavonoid and total phenolic contents were determined for the skins and seeds of fruit samples in 2008. At all sampling dates in 2008, vines grown on Geneva double curtain (GDC) and high cordon (HC) had higher midday percentage PAR transmittances than vines grown on Smart-Dyson (SD) and vertical shoot positioned (VSP) training systems. In 2009, transmittance relationships between trellises were not consistent throughout the season. In both years, leaf layer number (LLN) was lower for GDC and HC than for SD and VSP. Flavonoid and total phenol concentrations of the bound seed and bound skin extracts did not differ among trellises. Within the free extracts, VSP had higher total phenol concentration than SD (GDC and HC were intermediate) and there were no differences in flavonoid concentration. In 2008, GDC had higher pH than other trellises and higher soluble solids than SD and VSP; titratable acidity (TA) was lower in GDC and HC than in SD and VSP. In 2009, SD and VSP had the highest soluble solids concentrations; HC had lower pH than SD and VSP and there were no differences in TA. Results were inconclusive regarding light environment effects on fruit chemical composition.

Publisher

American Society for Horticultural Science

Subject

Horticulture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3