Training Systems for Cold Climate Interspecific Hybrid Grape Cultivars in Northern Climate Regions

Author:

Wimmer Madeline,Workmaster Beth Ann,Atucha Amaya

Abstract

Training systems influence grapevine (Vitis sp.) size, shape, and canopy architecture, which ultimately affects yield and fruit composition. Cold climate interspecific hybrid grapes (CCIHG) have propelled the creation of a new and fast-growing grape and wine industry in the northeast and upper midwest of the United States. This study evaluated the effect of three training systems: high cordon (HC), midwire vertical shoot positioning (VSP), and modified Scott Henry (SH) on vine growth, yield, and fruit composition of four CCIHG cultivars, Brianna, Frontenac, La Crescent, and Marquette, during two growing seasons. The divided canopy training system SH increased the crop yield per meter of row in all cultivars relative to HC and VSP, despite reduction in crop size imposed by crop thinning in vines trained to SH. VSP-trained vines had lower yields compared with HC, and this was most evident during the second year of the study, as vines were still being trained when the study commenced. Despite the higher crop size associated with vines trained in a SH system, there were minimal differences in fruit soluble solid concentration (SSC), titratable acidity (TA), and pH at harvest time. No differences were observed in vine size, expressed as dormant cane pruning weights, among training systems possibly because of the control of vegetative vigor, especially in VSP-trained vines, through shoot positioning and summer pruning. CCIHG cultivars appear to have the capacity to support higher yields under SH and HC systems without compromising fruit quality; however, labor requirements involved in establishing and maintaining more complex training systems should be considered when selecting a training system for CCIHG cultivars.

Publisher

American Society for Horticultural Science

Subject

Horticulture

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3