Using Hydrotime and ABA-time Models to Quantify Seed Quality of Brassicas during Development

Author:

Still David W.,Bradford Kent J.

Abstract

With many seed crops, the most difficult production decision is when to harvest. In indeterminate crops such as Brassica species, early harvests result in immature seed of low vigor while late harvests risk seed deterioration and seed loss due to shattering. To provide a biological basis on which to determine harvest timing, we have characterized seed development in rape seed (Brassica napus L. `Weststar') and red cabbage (Brassica oleracea L. Group Capitata) using population-based hydrotime and ABA-time models. These models provide information relevant to assessing physiological maturity, and therefore, seed quality. The hydrotime and ABA-time models quantify germination rate, the uniformity of germination, viability, and the sensitivity of germination to water potential and ABA. Indices derived from these models, along with maximum germination and t50 values, were used to determine physiological maturity (maximum seed quality) of the seeds during development. The overall trends in seed development were similar in both species: as seeds matured, germination became more uniform and less sensitive to low Ψ and externally applied ABA. The models accurately described germination time courses and final germination percentages except for seeds imbibed at very high concentrations of ABA. In rape seed, physiological maturity was attained several days after maximum seed dry mass, while in red cabbage physiological maturity occurred at or after maximum seed dry mass. Vigor indices were correlated with easily discerned traits such as moisture content and silique phenotypic characteristics. The results of these experiments suggest that hydrotime and ABA-time models can be successfully used to provide a biological basis on which to determine harvest in brassicas.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3