Author:
Sripathy K. V.,Groot Steven P. C.
Abstract
AbstractIn plants, a fascinating set of post-fertilization events result in the development of a dispersal unit known as a seed. During the maturation phase, seeds accumulate storage reserves and acquire desiccation tolerance, followed by an increase in seed vigour during maturation drying. Physiological (or mass) maturity may be attributed to the stage of seed maturation when maximum seed dry matter accumulation has occurred, marking the end of the seed-filling phase. The stage of maturity at harvest is one of the most important factors that can influence the quality of seeds. Recent studies established that seed vigour and longevity continue to increase even after physiological maturity, signifying the importance of the late maturation phase for maximizing seed quality. Among the plant hormones, abscisic acid (ABA) has been studied extensively for its role during seed development and maturation. Apart from ABA, gibberellic acid (GA), cytokinin and auxin also play a critical role during the development of seeds. Desiccation tolerance in seeds begins much before the attainment of physiological maturity. Acquisition of desiccation tolerance is associated with embryo accumulation of oligosaccharides of the raffinose family, low molecular weight antioxidants, late embryogenesis abundant proteins and heat shock proteins coupled with structural changes at the cellular level. To obtain seeds of maximum quality (in terms of germination, vigour and longevity), harvesting needs to be performed at or slightly after harvest maturity a period at which seed moisture content stabilizes with environmental factors. In this chapter, an attempt has been made to present the current understanding of seed development and maturation concentrating on various aspects viz. phases of seed development, the role of plant hormones, other factors affecting seed development, concepts of seed maturity, and its relevance to seed quality, maturity indices in crop plants and acquisition of desiccation tolerance in seeds.
Funder
ADT Project Consulting GmbH
Publisher
Springer Nature Singapore
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献