Dry architecture: towards the understanding of the variation of longevity in desiccation-tolerant germplasm

Author:

Ballesteros Daniel,Pritchard Hugh W.,Walters Christina

Abstract

AbstractDesiccation-tolerant (DT) plant germplasm (i.e. seeds, pollen and spores) survive drying to low moisture contents, when cytoplasm solidifies, forming a glass, and chemical reactions are slowed. DT germplasm may survive for long periods in this state, though inter-specific and intra-specific variation occurs and is not currently explained. Such variability has consequences for agriculture, forestry and biodiversity conservation. Longevity was previously considered in the context of morphological features, cellular constituents or habitat characteristics. We suggest, however, that a biophysical perspective, which considers the molecular organization – or structure – within dried cytoplasm, can provide a more integrated understanding of the fundamental mechanisms that control ageing rates, hence the variation of longevity among species and cell types. Based on biochemical composition and physical–chemical properties of dried materials, we explore three types of the interplay between structural conformations of dried cytoplasm and ageing: (1) cells that lack chlorophyll and contain few storage lipids may exhibit long shelf life, with ageing probably occurring through slow autoxidative processes within the glassy matrix as it relaxes; (2) cells with active chlorophyll may die quickly, possibly because they are prone to oxidative stress promoted by the photosynthetic pigments in the absence of metabolic water and (3) cells that lack chloroplasts but contain high storage lipids may die quickly during storage at −20°C, possibly because lipids crystallize and destabilize the glassy matrix. Understanding the complex variation in structural conformation in space and time may help to design strategies that increase longevity in germplasm with generally poor shelf life.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3