Influence of Ripening and Turgor on the Tensile Properties of Pears: A Microscopic Study of Cellular and Tissue Changes

Author:

De Belie Nele,Hallett Ian C.,Harker F. Roger,De Baerdemaeker Josse

Abstract

The tensile properties of european pear (Pyrus communis L. `Beurre Bosc') and asian pear (Pyrus pyrifolia Nakai `Choguro') were examined using a microscope-mounted apparatus that allowed direct observation and recording of cell and tissue changes during testing. To manipulate turgor potential, tissue slices from fruit of different firmness (ripeness) were incubated in sucrose solutions of differing water potential. Solution water potentials were adjusted for individual fruit, and varied between -2.5 and 1 MPa from the water potential of the expressed juice. Fruit firmness declined from 100 to 20 N and from 60 to 25 N during ripening of european and asian pears, respectively. For both european and asian pears the relationship between fruit firmness and tensile strength of tissue soaked in isotonic solutions was sigmoidal, with the major mechanism of tissue failure being cell wall failure and cell fracture at high firmness and intercellular debonding at low firmness. In the intermediate zone, where fruit firmness and tissue tensile strength decreased simultaneously, a mixture of cell wall rupture and intercellular debonding could be observed. Tissue and cell extension at maximum force both declined similarly as fruit softened. Tensile strength of tissue from firm pears (>50 N firmness, >0.8 N tensile strength) decreased by as much as 0.6 N during incubation in solutions that were more concentrated than the cell sap (hypertonic solutions). When similar tissue slices were incubated in solutions that were less concentrated than the cell sap (hypotonic solutions), the tensile strength increased by up to 0.4 N. This is interpreted as stress-hardening of the cell wall in response to an increase in cell turgor. Tensile strength of tissue from soft pears was not affected by osmotic changes, as the mechanism of tissue failure is cell-to-cell debonding rather than cell wall failure.

Publisher

American Society for Horticultural Science

Subject

Horticulture,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3