Multisite assessment of reproducibility in high‐content cell migration imaging data

Author:

Hu Jianjiang1ORCID,Serra‐Picamal Xavier1,Bakker Gert‐Jan2ORCID,Van Troys Marleen3,Winograd‐Katz Sabina4ORCID,Ege Nil5,Gong Xiaowei1ORCID,Didan Yuliia1,Grosheva Inna4,Polansky Omer4,Bakkali Karima3,Van Hamme Evelien6,van Erp Merijn2,Vullings Manon2,Weiss Felix2,Clucas Jarama5,Dowbaj Anna M5ORCID,Sahai Erik5,Ampe Christophe3ORCID,Geiger Benjamin4ORCID,Friedl Peter2ORCID,Bottai Matteo7,Strömblad Staffan1ORCID

Affiliation:

1. Department of Biosciences and Nutrition Karolinska Institutet Stockholm Sweden

2. Department of Medical BioSciences Radboud University Medical Center Nijmegen The Netherlands

3. Department of Biomolecular Medicine Ghent University Ghent Belgium

4. Department of Immunology and Regenerative Biology Weizmann Institute of Science Rehovot Israel

5. The Francis Crick Institute London UK

6. Bio Imaging Core, VIB Center for Inflammation Research Ghent Belgium

7. Division of Biostatistics, Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden

Abstract

AbstractHigh‐content image‐based cell phenotyping provides fundamental insights into a broad variety of life science disciplines. Striving for accurate conclusions and meaningful impact demands high reproducibility standards, with particular relevance for high‐quality open‐access data sharing and meta‐analysis. However, the sources and degree of biological and technical variability, and thus the reproducibility and usefulness of meta‐analysis of results from live‐cell microscopy, have not been systematically investigated. Here, using high‐content data describing features of cell migration and morphology, we determine the sources of variability across different scales, including between laboratories, persons, experiments, technical repeats, cells, and time points. Significant technical variability occurred between laboratories and, to lesser extent, between persons, providing low value to direct meta‐analysis on the data from different laboratories. However, batch effect removal markedly improved the possibility to combine image‐based datasets of perturbation experiments. Thus, reproducible quantitative high‐content cell image analysis of perturbation effects and meta‐analysis depend on standardized procedures combined with batch correction.

Funder

Cancerfonden

Horizon 2020 Framework Programme

Vetenskapsrådet

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3