CellTracksColab is a platform that enables compilation, analysis, and exploration of cell tracking data

Author:

Gómez-de-Mariscal Estibaliz,Grobe Hanna,Pylvänäinen Joanna W.,Xénard Laura,Henriques Ricardo,Tinevez Jean-Yves,Jacquemet GuillaumeORCID

Abstract

In life sciences, tracking objects from movies enables researchers to quantify the behavior of single particles, organelles, bacteria, cells, and even whole animals. While numerous tools now allow automated tracking from video, a significant challenge persists in compiling, analyzing, and exploring the large datasets generated by these approaches. Here, we introduce CellTracksColab, a platform tailored to simplify the exploration and analysis of cell tracking data. CellTracksColab facilitates the compiling and analysis of results across multiple fields of view, conditions, and repeats, ensuring a holistic dataset overview. CellTracksColab also harnesses the power of high-dimensional data reduction and clustering, enabling researchers to identify distinct behavioral patterns and trends without bias. Finally, CellTracksColab also includes specialized analysis modules enabling spatial analyses (clustering, proximity to specific regions of interest). We demonstrate CellTracksColab capabilities with 3 use cases, including T cells and cancer cell migration, as well as filopodia dynamics. CellTracksColab is available for the broader scientific community at https://github.com/CellMigrationLab/CellTracksColab.

Funder

Academy of Finland

Sigrid Juséliuksen Säätiö

Syöpäjärjestöt

Åbo Akademi

HORIZON EUROPE Framework Programme

Fundação Calouste Gulbenkian

H2020 European Research Council

INCEPTION project

Fondation Bettencourt Schueller

France BioImaging

European Molecular Biology Organization

Chan Zuckerberg Initiative

LS4FUTURE Associated Laboratory

Stiftelsen för Åbo Akademi

Publisher

Public Library of Science (PLoS)

Reference38 articles.

1. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines.;D Ershov;Nat Methods.,2022

2. LIM Tracker: a software package for cell tracking and analysis with advanced interactivity;H Aragaki;Sci Rep,2022

3. Automated Deep Lineage Tree Analysis Using a Bayesian Single Cell Tracking Approach.;K Ulicna;Front Comp Sci,2021

4. Tracking cell lineages in 3D by incremental deep learning.;K Sugawara;Elife,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3