Nonlinear Regression with High-Dimensional Space Mapping for Blood Component Spectral Quantitative Analysis

Author:

Ma Xiaoyan1ORCID,Zhang Yanbin1ORCID,Cao Hui1ORCID,Zhang Shiliang1ORCID,Zhou Yan2ORCID

Affiliation:

1. Shaanxi Key Laboratory of Smart Grid & the State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Accurate and fast determination of blood component concentration is very essential for the efficient diagnosis of patients. This paper proposes a nonlinear regression method with high-dimensional space mapping for blood component spectral quantitative analysis. Kernels are introduced to map the input data into high-dimensional space for nonlinear regression. As the most famous kernel, Gaussian kernel is usually adopted by researchers. More kernels need to be studied for each kernel describes its own high-dimensional feature space mapping which affects regression performance. In this paper, eight kernels are used to discuss the influence of different space mapping to the blood component spectral quantitative analysis. Each kernel and corresponding parameters are assessed to build the optimal regression model. The proposed method is conducted on a real blood spectral data obtained from the uric acid determination. Results verify that the prediction errors of proposed models are more precise than the ones obtained by linear models. Support vector regression (SVR) provides better performance than partial least square (PLS) when combined with kernels. The local kernels are recommended according to the blood spectral data features. SVR with inverse multiquadric kernel has the best predictive performance that can be used for blood component spectral quantitative analysis.

Funder

Fundamental Research Funds for the Central University

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3