Hybrid CNN-SVR Blood Pressure Estimation Model Using ECG and PPG Signals

Author:

Rastegar Solmaz1,Gholam Hosseini Hamid2,Lowe Andrew2ORCID

Affiliation:

1. PHD Media, Auckland 1024, New Zealand

2. Institute of Biomedical Technologies, School of Engineering, Computing and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand

Abstract

Continuous blood pressure (BP) measurement is vital in monitoring patients’ health with a high risk of cardiovascular disease. The complex and dynamic nature of the cardiovascular system can influence BP through many factors, such as cardiac output, blood vessel wall elasticity, circulated blood volume, peripheral resistance, respiration, and emotional behavior. Yet, traditional BP measurement methods in continuously estimating the BP are cumbersome and inefficient. This paper presents a novel hybrid model by integrating a convolutional neural network (CNN) as a trainable feature extractor and support vector regression (SVR) as a regression model. This model can automatically extract features from the electrocardiogram (ECG) and photoplethysmography (PPG) signals and continuously estimates the systolic blood pressure (SBP) and diastolic blood pressure (DBP). The CNN takes the correct topology of input data and establishes the relationship between ECG and PPG features and BP. A total of 120 patients with available ECG, PPG, SBP, and DBP data are selected from the MIMIC III database to evaluate the performance of the proposed model. This novel model achieves an overall Mean Absolute Error (MAE) of 1.23 ± 2.45 mmHg (MAE ± STD) for SBP and 3.08 ± 5.67 for DBP, all of which comply with the accuracy requirements of the AAMI SP10 standard.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3