Affiliation:
1. Department of Engineering Management, Anhui Audit College, Hefei 230601, China
2. School of Management, Hefei University of Technology, Hefei 230009, China
Abstract
The entire auditing process is complicated and tedious and requires a lot of human resources. Therefore, the intelligent development of auditing is the general trend. In order to improve the audit quality, this paper establishes an intelligent financial audit model that can predict the audit opinion of the consolidated financial statements. This paper proposes an audit opinion prediction model based on the fusion of deep belief neural network (DBN) and long-short term memory (LSTM). First, an indicator system is established for audit opinions, and multiple financial parameters are used to describe possible audit opinions. On this basis, a DBN network is designed to complete deep feature extraction and used for LSTM training. According to the prediction model obtained by training, the subsequent audit opinion can be scientifically predicted. In the experiment, the method in this paper is tested based on financial audit related data sets and compared with the prediction results of traditional multilayer perceptron (MLP), convolutional neural network (CNN), and LSTM models. The results verify the validity and reliability of the model in this paper.
Funder
Anhui Department of Education
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献