Construction and Simulation of Financial Audit Model Based on Convolutional Neural Network

Author:

Zhang Xiaoyi1ORCID

Affiliation:

1. School of Accounting, Tongling University, Tongling, Anhui 244061, China

Abstract

Big data has brought a new round of information revolution. Faced with the goal of full coverage of audit and supervision, making full use of big data is the main method to promote the realization of the goal of full coverage of audit and supervision. Data analysis and utilization is an indispensable task of auditing. Actively exploring multidimensional and intelligent data analysis methods and developing big data audit cases are the new development direction of auditing. The convolutional neural network’s excellent ability to extract data features well meets the relevant requirements of financial auditing. However, in practical applications, convolutional neural networks often encounter various problems such as disappearance of gradients and difficulty in convergence, which reduces its expected performance in financial audit applications. In order to make the performance of the financial audit model based on convolutional neural network more excellent, after summarizing the characteristics of genetic algorithm, this article applies genetic algorithm to the optimization of the convolutional neural network model. We applied genetic algorithm to optimize the initial weights of the convolutional neural network. The error sensitivity and learning rate changes of different hidden layers are discussed, the influence of different learning rates on the convergence speed of convolutional neural networks is analyzed, and the recognition performance of other algorithms on financial audit data sets is simulated and compared. We conducted experiments on the network structure and parameter optimization on the financial audit database. The results show that the recognition error rate of the convolutional neural network model with improved learning rate algorithm in the financial audit data set is lower than that of the multilayer feedforward network, so it has better performance.

Funder

Tongling University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3