Financial Account Audit Early Warning Based on Fuzzy Comprehensive Evaluation and Random Forest Model

Author:

Zhao Yuting1ORCID,Fang Yupeng2

Affiliation:

1. Department of Accountancy Accounting, School of Shandong Youth University of Political Science, Jinan 250000, China

2. General Affairs Office, Shandong Institute of Commerce and Technology, Jinan 250000, China

Abstract

With the continuous and rapid development of China’s economy, the operating environment of listed companies has become more and more complex, and the increasing pressure of international competition among companies has made the issue of financial risks of listed companies more severe. If you do not pay attention to the financial risk status of the enterprise, it will cause the financial risk to accumulate and eventually cause a financial crisis, which will be marked by ST. Therefore, this paper proposes an early warning model of enterprise financial accounts combining fuzzy sets and random forest trees, which specifically includes the following steps. First, the dataset is analyzed, selected and initially constructed by the training prediction sample. It is further explained by the data labels, and is charged whether the label is marked by ST or not. Then, the method of fuzzy mathematics is used to fuzzify the training sample data, and the two-category label is converted into a multiclass label; then, the random forest model is used to train the above-mentioned fuzzified sample data. Obtain the trained random forest model. Finally, input the prediction sample data into the trained random forest model to make decisions on the scene application. At the same time, the invention is applied to the enterprise financial risk early warning, which demonstrates the practicability and effectiveness of the invention Sexuality and scientificity. The significant advantage of the present invention is that the two-class decision making is converted into the multiclass decision making by combining the fuzzy set and the random forest model, which greatly improves the prediction accuracy, efficiency, and data rationality.

Funder

Shandong Youth University of Political Science-Level Project

Publisher

Hindawi Limited

Subject

General Mathematics

Reference29 articles.

1. Memristive network-based genetic algorithm and its application to image edge detection;Y. Yu;Journal of Systems Engineering and Electronics,2021

2. Asymmetric Characterization of Diversity in Symmetric Stable Marriage Problems: An Example of Agent Evacuation

3. Image edge detection based on swarm intelligence using memristive networks;P. Zoha;IEEE Trans. on CAD of Integrated Circuits and Systems,2018

4. Random matching in the college admissions problem;J. Pais;Economic Theory,2018

5. Brokerage between buyer and seller agents using constraint satisfaction problem models;J. J. Jung;Decision Support Systems,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3