Energy Efficient and Real-Time Remote Sensing in AI-Powered Drone

Author:

Kim Bongjae1ORCID,Jung Jinman2ORCID,Min Hong3ORCID,Heo Junyoung4ORCID

Affiliation:

1. Department of Computer Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea

2. Department of Computer Engineering, Inha University, Incheon 22212, Republic of Korea

3. School of Computing, Gachon University, Seongnam 13120, Republic of Korea

4. Division of Computer Engineering, Hansung University, Seoul 02876, Republic of Korea

Abstract

Remote sensing using drones has the advantage of being able to quickly monitor large areas such as rivers, oceans, mountains, and urban areas. In the case of applications dealing with large sensing data, it is not possible to send data from a drone to the server online, so it must be copied to the server offline after the end of the flight. However, online transmission is essential for applications that require real-time data analysis. The existing computation offloading scheme enables online transmission by processing large amounts of data in a drone and transferring it to the server, but without consideration for real-time constraints. We propose a novel computation offloading scheme which considers real-time constraints while minimizing the energy consumption of drones. Experimental results showed that the proposed scheme satisfied real-time constraints compared to the existing computation offloading scheme. Furthermore, the proposed technique showed that real-time constraints were satisfied even in situations where delays occurred on the server due to the processing of requests from multiple drones.

Funder

Ministry of Land, Infrastructure and Transport

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3