Algorithmic approach leveraging a real-time task scheduler with fan-out strategy

Author:

Larios-Gómez Mariano,Anzures García Mario,Cerón Garnica Carmen,Sánchez Gálvez Luz A.

Abstract

This study focuses on the communication challenges among processes in mobile drone systems, specifically addressing the dynamics and decentralization of their topology. An algorithmic approach for real-time systems is proposed, emphasizing its application in drones. The Fan-shaped Real-Time Task Scheduling Algorithm (APTTRA) serves as the cornerstone, distributing processes with deadline constraints in a fan-shaped manner to ensure timely completion. It introduces a metric that evaluates not only task compliance but also when and how long, providing a comprehensive insight into the system's effectiveness. To support performance evaluation, the use of a connected acyclic graph is proposed, offering a detailed understanding of performance across various process sections. The system's adaptability is highlighted through the incorporation of variables in real-time applications, providing a complete view in dynamic situations. Along with the use of Minix as a modular operating system, allows for testing APTTRA before implementation in real drones. The importance of real-time task scheduling for drones, especially helicopters and quadcopters, is emphasized, underscoring the need to tailor control algorithms. The evaluation focuses on implementation, successes in real flights, and the application of APTTRA in a genetic algorithm for calibration within the planning ranges.

Publisher

Editorial Académica Dragón Azteca

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3