APPLICATION OF THE REAL-TIME FAN SCHEDULING IN THE EXPLORATION-EXPLOITATION TO OPTIMIZE MINIMUM FUNCTIONS OBJECTIVES

Author:

LARIOS MarianoORCID,M. QUINTERO-FLORES Perfecto,ANZURES-GARCÍA MarioORCID,CAMACHO-HERNANDEZ MiguelORCID

Abstract

This paper presents the application of a task scheduling algorithm called Fan on an artificial intelligence technique as genetic algorithms for the problem of finding minima in objective functions, where the equations are predefined to measure the return on an investment. This work combines the methodologies of exploration and exploitation of a population, obtaining results with good aptitudes until finding a better learning based on conditions of not ending until an individual delivers a better aptitude, complying with the established restrictions, exhausting all possible options and fulfilling a stop condition. A real-time task planning algorithm was applied based on consensus techniques. A software tool was developed, and the scheduler called FAN was adapted that contemplates the execution of periodic, aperiodic, and sporadic tasks focused on controlled environments, considering that strict time restrictions are met. In the first phase of the work, it is shown how convergence precipitates to an evolution, this is done in few iterations. In a second stage, exploitation was improved, giving the algorithm a better performance in convergence and feasibility. As a result, there is the exploitation of the population and applying iterations with the fan algorithm and better aptitudes were obtained that occur through asynchronized processes under real-time planning concurrently.

Publisher

Politechnika Lubelska

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous),Mechanical Engineering,Biomedical Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3