Wireless Passive High-Temperature Sensor Readout System for Rotational-Speed Measurement

Author:

Hong Yingping12,Jia Pengyu12,Guan Xihao1,Xiong Jijun1,Liu Wenyi1,Zhang Huixin1,Li Chen12ORCID

Affiliation:

1. Science and Technology on Electronic Test and Measurement Laboratory, Taiyuan 030051, China

2. Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China

Abstract

Rotational-speed measurement in harsh environments is an important topic. However, the high rotation results in rapid frequency variations in the signals of a sensor and changes in physical properties under extreme thermal circumstances cause significant difficulties in reading signals. To address this problem, we adopt wireless passive measurement methods to design a special characteristic signal circuit module that achieves precise measurement of rotational speed at high temperatures. The sensor and the readout system include a variable frequency source, a readout antenna, and a radio frequency demodulation circuit. Herein, a demodulation detector of the signal conversion circuit is designed and used in the envelope detection module of the single sideband demodulation method. In addition, a conversion circuit test platform for high-temperature environment sensor signal is developed. From the testing, the output signal demodulation of the sensor was observed under a maximum temperature of 700°C with error less than 0.12%. The new sensor and measurement method do not require physical leads and achieve wireless noncontact accurate measurement of rotational speed at high temperature.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3