Advances in Marine Self-Powered Vibration Sensor Based on Triboelectric Nanogenerator

Author:

Zou YongjiuORCID,Sun Minzheng,Xu Weipeng,Zhao Xin,Du TailiORCID,Sun PeitingORCID,Xu MinyiORCID

Abstract

With the rapid development of advanced electronics/materials and manufacturing, marine vibration sensors have made great progress in the field of ship and ocean engineering, which could cater to the development trend of marine Internet of Things (IoT) and smart shipping. However, the use of conventional power supply models requires periodic recharging or replacement of batteries due to limited battery life, which greatly causes too much inconvenience and maintenance consumption, and may also pose a potential risk to the marine environment. By using the coupling effect of contact electrification and electrostatic induction, triboelectric nanogenerators (TENGs) were demonstrated to efficiently convert mechanical vibration movements into electrical signals for sensing the vibration amplitude, direction, frequency, velocity, and acceleration. In this article, according to the two working modes of harmonic vibration and non-harmonic vibration, the latest representative achievements of TENG-based vibration sensors for sensing mechanical vibration signals are comprehensively reviewed. This review not only covers the fundamental working mechanism, rational structural design, and analysis of practical application scenarios, but also investigates the characteristics of harmonic vibration and non-harmonic vibration. Finally, perspectives and challenges regarding TENG-based marine self-powered vibration sensors at present are discussed.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities, China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3