Estimation of Driver Lane Change Intention Based on the LSTM and Dempster–Shafer Evidence Theory

Author:

Liu Zhi-Qiang1ORCID,Peng Man-Cai1ORCID,Sun Yue-Chen1ORCID

Affiliation:

1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Rapid and correct estimation of driver lane change intention plays an important role in the advanced driver assistance system (ADAS), which could make the driver improve the reliability of the ADAS system and help to decrease driver workload. In this study, a method based on the long short-term memory network (LSTM) and Dempster–Shafer evidence theory is proposed. The model consists of a preliminary decision-making label and a final decision-making label. Driver visual information, head orientation, and vehicle dynamics are collected by preliminary decision-making label. Then, LSTM is used to calculate the initial probability of the driver lane change (left, right, and lane keeping) maneuver intention. The outputs of LSTM are normalized and assigned a basic probability by the Dempster–Shafer evidence theory. The final decision-making label analyzes the information and outputs the probability of each lane change intention and the decision is to identify the driver's current intention. The experimental results show that the accuracy of the model is 90.7% for the intention of changing left and 89.1% for the intention of changing right. The outcome of this work is an essential component for all levels of road vehicle automation.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3