Affiliation:
1. School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
Abstract
Rapid and correct estimation of driver lane change intention plays an important role in the advanced driver assistance system (ADAS), which could make the driver improve the reliability of the ADAS system and help to decrease driver workload. In this study, a method based on the long short-term memory network (LSTM) and Dempster–Shafer evidence theory is proposed. The model consists of a preliminary decision-making label and a final decision-making label. Driver visual information, head orientation, and vehicle dynamics are collected by preliminary decision-making label. Then, LSTM is used to calculate the initial probability of the driver lane change (left, right, and lane keeping) maneuver intention. The outputs of LSTM are normalized and assigned a basic probability by the Dempster–Shafer evidence theory. The final decision-making label analyzes the information and outputs the probability of each lane change intention and the decision is to identify the driver's current intention. The experimental results show that the accuracy of the model is 90.7% for the intention of changing left and 89.1% for the intention of changing right. The outcome of this work is an essential component for all levels of road vehicle automation.
Funder
National Natural Science Foundation of China
Subject
Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献