Affiliation:
1. Department of Mechanical Engineering, Sirjan University of Technology, Sirjan, Iran
Abstract
This paper endeavors to contribute to the field of optimal control via presenting an optimal fuzzy Proportional Derivative (PD) controller for a RPP (Revolute-Prismatic-Prismatic) robot manipulator based on particle swarm optimization and inverse dynamics. The Denavit-Hartenberg approach and the Jacobi method for each of the arms of the robot are employed in order to gain the kinematic equations of the manipulator. Furthermore, the Lagrange method is utilized to obtain the dynamic equations of motion. Hence, in order to control the dynamics of the robot manipulator, inverse dynamics and a fuzzy PD controller optimized via particle swarm optimization are used in this research study. The obtained results of the optimal fuzzy PD controller based on the inverse dynamics are compared to the outcomes of the PD controller, and it is illustrated that the optimal fuzzy PD controller shows better controlling performance in comparison with other controllers.
Subject
General Computer Science,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献