Dynamic Posture Stabilization Of Humanoid Robot NAO Using 3D-Multilinked Dual Spring-Loaded Inverted Pendulum Model for Uneven and Inclined Floor

Author:

Kashyap Abhishek Kumar12,Parhi Dayal R.2

Affiliation:

1. Robotics Laboratory, Mechanical Engineering Department, MIT Art, Design & Technology University, Pune 412201, Maharashtra, India

2. Robotics Laboratory, Mechanical Engineering Department, National Institute of Technology, Rourkela 769008, Odisha, India

Abstract

Gait pattern performance, for its crucial significance in humanoid robot stabilization, has attracted the attention of researchers worldwide. Although simplified models highlight major features, bipedal walking has bewildered the researchers. Therefore, for a precise understanding of the bipedal model, a state-of-the-art, simplified model has been proposed in this paper which comprises a 3D-multilinked dual spring-loaded inverted pendulum (3D-MDSLIP) while acknowledging the vertical fluctuations of the center of mass (CoM). In addition, the model considers upper body movement and its effects on the stabilization of the humanoid robot. The mathematical modeling of a humanoid walking over the obstacle and slope is demonstrated to precisely understand the problem. The tuning process of the parameters and postures in a humanoid robot is complex and time-consuming. For proper walking of a robot over uneven terrains and slopes, tuning of the PID controller is achieved using converged teaching-learning based optimization (CTLBO) technique for a central pattern generator (CPG) gait, as introduced in the paper. The optimal gait angles are applied to the experimental and simulated NAO to successfully navigate the provided terrain. Thus, the experimental and simulation results jointly show that the proposed CPG-CTLBO gait learning technique is feasible for finding an optimal gait pattern for the humanoid robot within a deviation of 5%. The energy efficiency of the proposed controller is compared with the default controller of NAO based on the average electronic current in sagittal and lateral movement. Further, it is examined for the energy consumption for several slopes, and the results obtained are acceptable, showing the controller is efficient. Additionally, it has been compared with an existing technique for walking a humanoid robot on uneven terrains. The graph obtained using the proposed technique demonstrates the superiority of the proposed technique.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3