Affiliation:
1. Robotics Laboratory, Mechanical Engineering Department, MIT Art, Design & Technology University, Pune 412201, Maharashtra, India
2. Robotics Laboratory, Mechanical Engineering Department, National Institute of Technology, Rourkela 769008, Odisha, India
Abstract
Gait pattern performance, for its crucial significance in humanoid robot stabilization, has attracted the attention of researchers worldwide. Although simplified models highlight major features, bipedal walking has bewildered the researchers. Therefore, for a precise understanding of the bipedal model, a state-of-the-art, simplified model has been proposed in this paper which comprises a 3D-multilinked dual spring-loaded inverted pendulum (3D-MDSLIP) while acknowledging the vertical fluctuations of the center of mass (CoM). In addition, the model considers upper body movement and its effects on the stabilization of the humanoid robot. The mathematical modeling of a humanoid walking over the obstacle and slope is demonstrated to precisely understand the problem. The tuning process of the parameters and postures in a humanoid robot is complex and time-consuming. For proper walking of a robot over uneven terrains and slopes, tuning of the PID controller is achieved using converged teaching-learning based optimization (CTLBO) technique for a central pattern generator (CPG) gait, as introduced in the paper. The optimal gait angles are applied to the experimental and simulated NAO to successfully navigate the provided terrain. Thus, the experimental and simulation results jointly show that the proposed CPG-CTLBO gait learning technique is feasible for finding an optimal gait pattern for the humanoid robot within a deviation of 5%. The energy efficiency of the proposed controller is compared with the default controller of NAO based on the average electronic current in sagittal and lateral movement. Further, it is examined for the energy consumption for several slopes, and the results obtained are acceptable, showing the controller is efficient. Additionally, it has been compared with an existing technique for walking a humanoid robot on uneven terrains. The graph obtained using the proposed technique demonstrates the superiority of the proposed technique.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Artificial Intelligence,Mechanical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献