An intelligent fuzzy-particle swarm optimization supervisory-based control of robot manipulator for industrial welding applications

Author:

Sathish Kumar A.,Naveen S.,Vijayakumar R.,Suresh V.,Asary Abdul Rab,Madhu S.,Palani Kumaran

Abstract

AbstractThe propensity of manufacturers to produce goods at affordable cost, with more accuracy, and at a faster rate force them to search for novel solutions, such as deploying robots in place of people in a sector that can accommodate their needs. Welding is one of the most crucial processes in the automotive industry. This process is time-consuming, subject to error, and demands skilled professionals. The robotic application can improve this area of production and quality. Other industries, such as painting and material handling, can also profit from the use of robots. This work describes the fuzzy DC linear servo controller, which functions as a robotic arm actuator. Robots have been widely employed in most productive sectors in recent years, including assembly plates, welding, tasks at higher temperatures, etc. Controlling a robot accurately is a difficult undertaking as a robot is very nonlinear with many joints that are often organized and unstructured. To carry out the effective task, an effective PID control based on fuzzy logic has been employed together with the method of Particle Swarm Optimization (PSO) approach for the estimate of the parameter. This offline technique determines the lowest number of optimal robotic arm control parameters. To verify the controller design with computer simulation, a comparative assessment of controllers is given by means of a fuzzy surveillance controller with PSO which improves the parameter gain to provide a rapid climb, a smaller overflow, no steady condition error signal, and effective torque control of the robot arm.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3