Long Short-Term Memory Networks and Bayesian Optimization for Predicting the Time-Weighted Average Pressure of Shield Supporting Cycles

Author:

Yan Wanzi1,Wang Junhui1ORCID,Cheng Jingyi1ORCID,Wan Zhijun1ORCID,Xing Keke1,Gao Kuidong2

Affiliation:

1. Key Laboratory of Deep Coal Resource Mining (CUMT), Ministry of Education of China, School of Mines, China University of Mining and Technology, Xuzhou 221116, China

2. Shandong Province Key Laboratory of Mine Mechanical Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Characteristic parameters of shield supporting in fully mechanized mining, especially time-weighted average pressure (TWAP), are crucial for the analysis and prediction of roof weightings in longwall panels. Despite the leap-forward development of underground data collection and transmission, mining and regional correlation analysis of massive shield data remains challenging. In this study, a hybrid machine learning model integrating the long short-term memory (LSTM) networks and the Bayesian optimization (BO) algorithm was developed to predict TWAP based on the setting pressure (SP), revised setting pressure (RSP), final pressure (FP), number of yielding (NY), TWAP in the last supporting cycle (TWAP (last)), and loading rate in each period. Statistical measures including the mean square error and mean absolute error were used to validate and compare the prediction performances of the BP model, the LSTM model, and the BO-LSTM model. Furthermore, sensitivity studies were carried out to evaluate the importance of input parameters. The results show that the BO-LSTM model is robust in predicting TWAP. FP and TWAP (last) are the most important input parameters in TWAP prediction, followed by RSP and NY. Moreover, the total importance scores of loading rates reach 0.229, indicating the necessity of including these parameters into the dataset. The proposed BO-LSTM model is capable of predicting TWAP which serves for shield-roof status intelligent perception.

Funder

Shandong Province Key Laboratory of Mine Mechanical Engineering

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference45 articles.

1. Challenges in the Mining and Utilization of Deep Mineral Resources

2. Research on evaluation and control technology of coal pillar stability based on the fracture digitization method

3. Longwall Mining

4. Electromagnetic emission technique of monitoring rock burst and its application;L. M. Dou;Journal of China Coal Society,2004

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3