A Long Short-Term Memory Neural Network Algorithm for Data-Driven Spatial Load Forecasting

Author:

Wang Qing1ORCID,Li Naigen1

Affiliation:

1. Xinyu University, China

Abstract

Based on the LSTM neural network, the author proposes a new data-driven spatial load prediction method to analyze the time series within the neural network, avoid data depression, and determine the correlation of the training data space. Establish prediction models based on different neurons, reduce the dimensionality of collected data through data preprocessing, and ensure data integrity. At the same time, provide data management base, control model input and output, unify process model, ensure training sequence model, combine LSTM neural network model, select prediction method, and finish data-driven related transportation. Experimental results show that the data driven global load forecasting model based on LSTM neural network proposed in this paper takes 1.23 seconds to complete 8000 training data, when traditional data drive spatial load forecasting method based on CNN neural network takes 3.56 seconds to finish 8000 training data. It can be seen that the prediction method proposed in this article has a good prediction accuracy.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3