A Daily Air Pollutant Concentration Prediction Framework Combining Successive Variational Mode Decomposition and Bidirectional Long Short-Term Memory Network

Author:

Huang Zhong1,Li Linna12,Ding Guorong3

Affiliation:

1. College of Science, Wuhan University of Science and Technology, Wuhan 430065, China

2. Hubei Province Key Laboratory of Systems, Science in Metallurgical Process, Wuhan 430065, China

3. Statistics Bureau of Maiji District, Tianshui 741020, China

Abstract

Precise and efficient air quality prediction plays a vital role in safeguarding public health and informing policy-making. Fine particulate matter, specifically PM2.5 and PM10, serves as a crucial indicator for assessing and managing air pollution levels. In this paper, a daily pollution concentration prediction model combining successive variational mode decomposition (SVMD) and a bidirectional long short-term memory (BiLSTM) neural network is proposed. Firstly, SVMD is used as an unsupervised feature-learning method to divide data into intrinsic mode functions (IMFs) and to extract frequency features and improve short-term trend prediction. Secondly, the BiLSTM network is introduced for supervised learning to capture small changes in the air pollutant sequence and perform prediction of the decomposed sequence. Furthermore, the Bayesian optimization (BO) algorithm is employed to identify the optimal key parameters of the BiLSTM model. Lastly, the predicted values are reconstructed to generate the final prediction results for the daily PM2.5 and PM10 datasets. The prediction performance of the proposed model is validated using the daily PM2.5 and PM10 datasets collected from the China Environmental Monitoring Center in Tianshui, Gansu, and Wuhan, Hubei. The results show that SVMD can smooth the original series more effectively than other decomposition methods, and that the BO-BiLSTM method is better than other LSTM-based models, thereby proving that the proposed model has excellent feasibility and accuracy.

Funder

Hubei Key Laboratory of Blasting Engineering Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3