Affiliation:
1. College of Business Administration, Zhejiang Gongshang University, Hangzhou 310018, China
2. Center for Studies of Modern Business, Zhejiang Gongshang University, Hangzhou 310018, China
Abstract
With the rapid development of customer relationship management, more and more user recommendation technologies are used to enhance the customer satisfaction. Although there are many good recommendation algorithms, it is still a challenge to increase the accuracy and diversity of these algorithms to fulfill users’ preferences. In this paper, we construct a user recommendation model containing a new method to compute the similarities among users on bipartite networks. Different from other standard similarities, we consider the influence of each object node including popular degree, preference degree, and trust relationship. Substituting these new definitions of similarity for the standard cosine similarity, we propose a modified collaborative filtering algorithm based on multifactors (CF-M). Detailed experimental analysis on two benchmark datasets shows that the CF-M is of high accuracy and also generates more diversity.
Funder
National Natural Science Foundation of China
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献