Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering

Author:

Huang Zan1,Chen Hsinchun1,Zeng Daniel1

Affiliation:

1. The University of Arizona, Tucson, AZ

Abstract

Recommender systems are being widely applied in many application settings to suggest products, services, and information items to potential consumers. Collaborative filtering, the most successful recommendation approach, makes recommendations based on past transactions and feedback from consumers sharing similar interests. A major problem limiting the usefulness of collaborative filtering is the sparsity problem, which refers to a situation in which transactional or feedback data is sparse and insufficient to identify similarities in consumer interests. In this article, we propose to deal with this sparsity problem by applying an associative retrieval framework and related spreading activation algorithms to explore transitive associations among consumers through their past transactions and feedback. Such transitive associations are a valuable source of information to help infer consumer interests and can be explored to deal with the sparsity problem. To evaluate the effectiveness of our approach, we have conducted an experimental study using a data set from an online bookstore. We experimented with three spreading activation algorithms including a constrained Leaky Capacitor algorithm, a branch-and-bound serial symbolic search algorithm, and a Hopfield net parallel relaxation search algorithm. These algorithms were compared with several collaborative filtering approaches that do not consider the transitive associations: a simple graph search approach, two variations of the user-based approach, and an item-based approach. Our experimental results indicate that spreading activation-based approaches significantly outperformed the other collaborative filtering methods as measured by recommendation precision, recall, the F-measure, and the rank score. We also observed the over-activation effect of the spreading activation approach, that is, incorporating transitive associations with past transactional data that is not sparse may "dilute" the data used to infer user preferences and lead to degradation in recommendation performance.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Science Applications,General Business, Management and Accounting,Information Systems

Reference48 articles.

1. Statistical mechanics of complex networks;Albert R.;Rev. Mod. Phys.,2002

2. A spreading activation theory of memory;Anderson J. R.;J. Verb. Learn. Verb. Behav.,1983

3. Fab

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3