Molecular Marker Study of Particulate Organic Matter in Southern Ontario Air

Author:

Irei Satoshi1ORCID,Stupak Jacek1,Gong Xueping1,Chan Tak-Wai2,Cox Michelle1,McLaren Robert1,Rudolph Jochen1

Affiliation:

1. Centre for Atmospheric Chemistry and Department of Chemistry, York University, 4700 Keele St., Toronto, ON, Canada M3J 1P3

2. Climate Chemistry Measurements and Research, Climate Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, Canada M3H 5T4

Abstract

To study the origins of airborne particulate organic matter in southern Ontario, molecular marker concentrations were studied at Hamilton, Simcoe, and York Gateway Tunnel, representing industrial, rural, and heavy traffic sites, respectively. Airborne particulate matter smaller than 10 μm in aerodynamic diameter was collected on quartz filters, and the collected samples were analyzed for total carbons, 5-6 ring PAHs, hopanes, n-alkanes (C20 to C34), and oxygenated aromatic compounds. Results showed that PAH concentrations at all three sites were highly correlated, indicating vehicular emissions as the major source. Meanwhile, in the scatter plots of α,β-hopane and trisnorhopane, concentrations displayed different trends for Hamilton and Simcoe. The slopes of the linear regressions for Hamilton and the tunnel were statistically the same, while the slope for Simcoe was significantly different from those. Comparison with literature values revealed that the trend observed at Simcoe was explained by the influence from coal combustion. We also found that the majority of oxygenated aromatic compounds at both sites were in the similar level, possibly implying secondary products contained in the southern Ontario air. Regardless of some discrepancies, absolute principal component analysis applied to the datasets could reproduce those findings.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3