An Investigation into Which Methods Best Explain Children’s Exposure to Traffic-Related Air Pollution

Author:

Van Ryswyk KeithORCID,Wheeler Amanda J.ORCID,Grgicak-Mannion Alice,Xu Xiaohong,Curran Jason,Caravaggio Gianni,Hall Ajae,MacDonald Penny,Brook Jeffrey R.

Abstract

There have been several methods employed to quantify individual-level exposure to ambient traffic-related air pollutants (TRAP). These include an individual’s residential proximity to roads, measurement of individual pollutants as surrogates or markers, as well as dispersion and land use regression (LUR) models. Hopanes are organic compounds still commonly found on ambient particulate matter and are specific markers of combustion engine primary emissions, but they have not been previously used in personal exposure studies. In this paper, children’s personal exposures to TRAP were evaluated using hopanes determined from weekly integrated filters collected as part of a personal exposure study in Windsor, Canada. These hopane measurements were used to evaluate how well other commonly used proxies of exposure to TRAP performed. Several of the LUR exposure estimates for a range of air pollutants were associated with the children’s summer personal hopane exposures (r = 0.41–0.74). However, all personal hopane exposures in summer were more strongly associated with the length of major roadways within 500 m of their homes. In contrast, metrics of major roadways and LUR estimates were poorly correlated with any winter personal hopanes. Our findings suggest that available TRAP exposure indicators have the potential for exposure misclassification in winter vs. summer and more so for LUR than for metrics of major road density. As such, limitations are evident when using traditional proxy methods for assigning traffic exposures and these may be especially important when attempting to assign exposures for children’s key growth and developmental windows. If long-term chronic exposures are being estimated, our data suggest that measures of major road lengths in proximity to homes are a more-specific approach for assigning personal TRAP exposures.

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3