Bus Single-Trip Time Prediction Based on Ensemble Learning

Author:

Huang Haifeng1ORCID,Huang Lei1ORCID,Song Rongjia2,Jiao Feng1,Ai Tao1

Affiliation:

1. Department of Information Management, School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China

2. Department of Information Management, School of Management, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

The prediction of bus single-trip time is essential for passenger travel decision-making and bus scheduling. Since many factors could influence bus operations, the accurate prediction of the bus single-trip time faces a great challenge. Moreover, bus single-trip time has obvious nonlinear and seasonal characteristics. Hence, in order to improve the accuracy of bus single-trip time prediction, five prediction algorithms including LSTM (Long Short-term Memory), LR (Linear Regression), KNN (K-Nearest Neighbor), XGBoost (Extreme Gradient Boosting), and GRU (Gate Recurrent Unit) are used and examined as the base models, and three ensemble models are further constructed by using various ensemble methods including Random Forest (bagging), AdaBoost (boosting), and Linear Regression (stacking). A data-driven bus single-trip time prediction framework is then proposed, which consists of three phases including traffic data analysis, feature extraction, and ensemble model prediction. Finally, the data features and the proposed ensembled models are analyzed using real-world datasets that are collected from the Beijing Transportation Operations Coordination Center (TOCC). Through comparing the predicting results, the following conclusions are drawn: (1) the accuracy of predicting by using the three ensemble models constructed is better than the corresponding prediction results by using the five sub-models; (2) the Random Forest ensemble model constructed based on the bagging method has the best prediction accuracy among the three ensemble models; and (3) in terms of the five sub-models, the prediction accuracy of LR is better than that of the other four models.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference72 articles.

1. Pattern-Based Time-Discretized Method for Bus Travel Time Prediction

2. Network-scale traffic modeling and forecasting with graphical lasso and neural networks;D Subhe;Journal of Transportation Engineering,2022

3. Bus-Arrival-Time Prediction Models: Link-Based and Section-Based

4. A method of road traffic flow prediction based on ARIMA model;L. Jianhui,2012

5. SHORT-TERM TRAFFIC PREDICTION USING SARIMA AND FbPROPHET;N. K. Chikkakrishna,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3