Development of compressive strength prediction platform for concrete materials based on machine learning techniques
Author:
Publisher
Elsevier BV
Subject
Mechanics of Materials,Safety, Risk, Reliability and Quality,Building and Construction,Architecture,Civil and Structural Engineering
Reference84 articles.
1. Advanced smart concrete - a review of current progress, benefits and challenges;Makul;J. Clean. Prod.,2020
2. Experimental study on the ultimate bearing capacity of damaged RC arches strengthened with ultra-high performance concrete;Yang;Eng. Struct.,2023
3. Multiple effects of particle size distribution modulus (q) and maximum aggregate size (Dmax) on the characteristics of Ultra-High Performance concrete (UHPC): experiments and modeling;Liu;Cement Concr. Compos.,2022
4. Quantitative effect of seawater on the hydration kinetics and microstructure development of Ultra High Performance Concrete (UHPC);Sun;Construct. Build. Mater.,2022
5. Admixtures used in self-compacting concrete: a review;Devi;Iranian Journal of Science and Technology, Transactions of Civil Engineering,2020
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Investigating on thermal insulation in concrete partition wall with insulation-material-infilled Voronoi sections: Feature impact analysis and efficient assessment approach;Journal of Building Engineering;2024-11
2. Development of ANN-based metaheuristic models for the study of the durability characteristics of high-volume fly ash self-compacting concrete with silica fume;Journal of Building Engineering;2024-10
3. Prediction and optimization framework of shear strength of reinforced concrete flanged shear wall based on machine learning and non-dominated sorting genetic algorithm-II;Advances in Structural Engineering;2024-09-10
4. Prediction of non-uniform shrinkage of steel-concrete composite slabs based on explainable ensemble machine learning model;Journal of Building Engineering;2024-07
5. Compressive strength and sensitivity analysis of fly ash composite foam concrete: Efficient machine learning approach;Advances in Engineering Software;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3