Machine Learning to Assess Relatedness: The Advantage of Using Firm-Level Data

Author:

Albora Giambattista12ORCID,Zaccaria Andrea13ORCID

Affiliation:

1. Enrico Fermi Center for Study and Research, Rome, Italy

2. Sapienza University, Department of Physics, Rome, Italy

3. Institute for Complex Systems-CNR, UOS Sapienza, Rome, Italy

Abstract

The relatedness between a country or a firm and a product is a measure of the feasibility of that economic activity. As such, it is a driver for investments at a private and institutional level. Traditionally, relatedness is measured using networks derived by country-level co-occurrences of product pairs, that is counting how many countries export both. In this work, we compare networks and machine learning algorithms trained not only on country-level data, but also on firms, which is something not much studied due to the low availability of firm-level data. We quantitatively compare the different measures of relatedness, by using them to forecast the exports at the country and firm level, assuming that more related products have a higher likelihood to be exported in the future. Our results show that relatedness is scale dependent: the best assessments are obtained by using machine learning on the same typology of data one wants to predict. Moreover, we found that while relatedness measures based on country data are not suitable for firms, firm-level data are very informative also for the development of countries. In this sense, models built on firm data provide a better assessment of relatedness. We also discuss the effect of using parameter optimization and community detection algorithms to identify clusters of related companies and products, finding that a partition into a higher number of blocks decreases the computational time while maintaining a prediction performance well above the network-based benchmarks.

Funder

Centro Ricerche Enrico Fermi Research Project “Complessità in Economia.”

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3