Prediction and visualization of Mergers and Acquisitions using Economic Complexity

Author:

Arsini Lorenzo,Straccamore MatteoORCID,Zaccaria Andrea

Abstract

Mergers and Acquisitions represent important forms of business deals, both because of the volumes involved in the transactions and because of the role of the innovation activity of companies. Nevertheless, Economic Complexity methods have not been applied to the study of this field. By considering the patent activity of about one thousand companies, we develop a method to predict future acquisitions by assuming that companies deal more frequently with technologically related ones. We address both the problem of predicting a pair of companies for a future deal and that of finding a target company given an acquirer. We compare different forecasting methodologies, including machine learning and network-based algorithms, showing that a simple angular distance with the addition of the industry sector information outperforms the other approaches. Finally, we present the Continuous Company Space, a two-dimensional representation of firms to visualize their technological proximity and possible deals. Companies and policymakers can use this approach to identify companies most likely to pursue deals or explore possible innovation strategies.

Funder

Centro Ricerche Enrico Fermi

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference69 articles.

1. Meta-analyses of post-acquisition performance: indications of unidentified moderators;DR King;Strategic Management Journal,2004

2. Critical Success Factors through the Mergers and Acquisitions Process: Revealing Pre- and Post-M&A Connections for Improved Performance;E Gomes;Thunderbird International Business Review,2013

3. Review of literature linking corporate performance to mergers and acquisitions;TH Ismail;The Review of Financial and Accounting Studies,2011

4. Mergers and acquisitions in the hightech industry: A literature review;M Rossi;International Journal of Organizational Analysis,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Application of Data Analytics for Understanding Patterns of Mergers and Acquisitions and CEO Characteristics in and between Crisis Times;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3