Affiliation:
1. iHealthscreen Inc., New York, NY, USA
2. New York Eye and Ear Infirmary, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Abstract
Background and Objective. Glaucomatous vision loss may be preceded by an enlargement of the cup-to-disc ratio (CDR). We propose to develop and validate an artificial-intelligence-based CDR grading system that may aid in effective glaucoma-suspect screening. Design, Setting, and Participants. 1546 disc-centered fundus images were selected, including all 457 images from the Retinal Image Database for Optic Nerve Evaluation dataset, and images were randomly selected from the Age-Related Eye Disease Study and Singapore Malay Eye Study to develop the system. First, a proprietary semiautomated software was used by an expert grader to quantify vertical CDR. Then, using CDR below 0.5 (nonsuspect) and CDR above 0.5 (glaucoma suspect), deep-learning architectures were used to train and test a binary classifier system. Measurements. The binary classifier, with glaucoma suspect as positive, is measured using sensitivity, specificity, accuracy, and AUC. Results. The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sensitivity, 80.11%; specificity, 84.96%; and AUC, 0.85). Conclusions. Having demonstrated an accurate and fully automated glaucoma-suspect screening system that can be deployed on telemedicine platforms, we plan prospective trials to determine the feasibility of the system in primary-care settings.
Reference62 articles.
1. Glaucoma fact and figures;Bright-Focus-Foundation,2020
2. Changing patterns in global blindness: 1988–2008;A. Foster;Community Eye Health,2008
3. Global data on visual impairment in the year 2002;S. Resnikoff;Bulletin of the World Health Organization,2004
4. Primary open-angle glaucoma
5. Glaucoma data and statistics;N. E. Institute,2020
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献