Automated Classification of Physiologic, Glaucomatous, and Glaucoma-Suspected Optic Discs Using Machine Learning

Author:

Diener Raphael1,Renz Alexander W.2,Eckhard Florian3,Segbert Helmar1,Eter Nicole1,Malcherek Arnim2,Biermann Julia1

Affiliation:

1. Department of Ophthalmology, University of Muenster Medical Center, 48149 Muenster, Germany

2. Department of Informatics, University of Applied Sciences Darmstadt, 64295 Darmstadt, Germany

3. Department of Informatics, Technical University of Munich, 80333 Munich, Germany

Abstract

In order to generate a machine learning algorithm (MLA) that can support ophthalmologists with the diagnosis of glaucoma, a carefully selected dataset that is based on clinically confirmed glaucoma patients as well as borderline cases (e.g., patients with suspected glaucoma) is required. The clinical annotation of datasets is usually performed at the expense of the data volume, which results in poorer algorithm performance. This study aimed to evaluate the application of an MLA for the automated classification of physiological optic discs (PODs), glaucomatous optic discs (GODs), and glaucoma-suspected optic discs (GSODs). Annotation of the data to the three groups was based on the diagnosis made in clinical practice by a glaucoma specialist. Color fundus photographs and 14 types of metadata (including visual field testing, retinal nerve fiber layer thickness, and cup–disc ratio) of 1168 eyes from 584 patients (POD = 321, GOD = 336, GSOD = 310) were used for the study. Machine learning (ML) was performed in the first step with the color fundus photographs only and in the second step with the images and metadata. Sensitivity, specificity, and accuracy of the classification of GSOD vs. GOD and POD vs. GOD were evaluated. Classification of GOD vs. GSOD and GOD vs. POD performed in the first step had AUCs of 0.84 and 0.88, respectively. By combining the images and metadata, the AUCs increased to 0.92 and 0.99, respectively. By combining images and metadata, excellent performance of the MLA can be achieved despite having only a small amount of data, thus supporting ophthalmologists with glaucoma diagnosis.

Funder

Open Access Publication Fund of the University of Münster

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3