Design of New Nonisolated High Gain Converter for Higher Power Density

Author:

Rajesh Ramachandran1ORCID,Prabaharan Natarajan1ORCID

Affiliation:

1. Department of EEE, SASTRA Deemed University, Thanjavur 613401, Tamilnadu, India

Abstract

A high gain nonisolated DC-DC converter using a single power semiconductor switch is proposed in this article. The operation of the proposed converter is explained under continuous conduction mode (CCM), discontinuous conduction mode (DCM), and boundary conduction mode (BCM). The mathematical expressions for steady-state voltage gain, voltage stress, and current stress of diodes and switch are provided. Also, the design of inductors and capacitors in the CCM mode is explained with appropriate mathematical equations. The proposed topology is tested with a 200 W prototype at 50 kHz and a 60% duty cycle. The dynamic behavior of the proposed converter is examined by changing the duty cycle value and also load values. The proposed converter is verified with experimental results to prove the effectiveness of its operation. The proposed converter provides higher steady-state voltage gain as compared with recently developed topologies. The efficiency and power density of the proposed converter is 90% and 1.16 kW/L, respectively.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3