A High-Efficiency DC-DC Converter Based on Series/Parallel Switched Inductor Capacitors for Ultra-High Voltage Gains

Author:

Algamluoli Ammar Falah12,Wu Xiaohua1

Affiliation:

1. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China

2. Electrical Engineering Department, University of Baghdad, Baghdad 999048, Iraq

Abstract

A high-efficiency DC-DC converter employing a modified architecture called the hybrid switched inductor–capacitor series (MHSLCS) is proposed in this paper. The primary goal is to achieve a notably ultra-high voltage gain for renewable energy systems (RESs). Furthermore, the use of only one input capacitor in the MHSLCS eliminates pulsations in the input current at both low and high duty ratios. The proposed converter integrates the MHSLCS with a modified switched capacitor (MSC) that interleaves with the main MOSFET, effectively doubling the voltage transfer gain. Additionally, a modified hybrid switched inductor–capacitor parallel (MHSLCP) is incorporated in parallel with an interleaved auxiliary MOSFET. Both MOSFETs, combined with the MSC, contribute to achieving an ultra-high voltage gain. In addition, the inductors of the MHSLCP operate in a discontinuous conduction mode (DCM), which results in significant stress reductions in the power diodes and switches at high output voltages. The advantages of the proposed converter are multifaceted, demonstrating a high efficiency while minimizing the voltage in power device diodes and MOSFETs. The use of low inductance and capacitance values at high switching frequencies further enhances the performance. Wide-bandgap (WBG) power devices are employed to achieve the desired high voltage gain and efficiency. The proposed converter was designed with a PCB and underwent experimental testing to validate laboratory results. The proposed converter boosted the input voltage from 30 V to a variable output voltage between 325 V and 500 V, with a power output of 325 watts and an efficiency of 95.5%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3