A Local Enhancement Method for Large-Scale Building Facade Depth Images using Densely Matched Point Clouds

Author:

Guo Jiao1ORCID,Li Ke1,Xu Hao2

Affiliation:

1. School of Architectural Engineering of Huanggang Normal University, Huanggang 438000, Hubei, China

2. China Railway Sixth Survey and Design Institute Group Co., Ltd, Tianjing 300000, China

Abstract

In recent years, laser scanning systems have been widely used to acquire multi-level three-dimensional spatial objects in real time. The laser scanning system is used to acquire the three-dimensional point cloud data of urban scenes. Due to the large-scale characteristics of urban scenes, and the problems of scanning occlusion, scanning path, and limited scanning laser range, the laser scanning system cannot scan every object in the scene comprehensively, multidirectionally and finely, so the corresponding three-dimensional point cloud data collected by many objects are incomplete, and the data images are relatively sparse and unevenly distributed. The existing point cloud denoising and enhancement algorithms, such as AMLS, RMLS, LOP, and WLOP, all use local information to enhance the missing or sparse parts of the point cloud. This point cloud enhancement method is only limited to a small range and cannot do anything for the larger missing area of the point cloud. Even if it is done reluctantly, the effect is not satisfactory. There are a lot of repetitive and similar features in urban buildings, such as the repetitive areas of floors and balconies in buildings. These repetitive areas are distributed in different positions of point clouds, so the repetitive information has non local characteristics. Based on the nonlocal characteristics of building point cloud data and the repetitive structure of buildings, this article proposes a nonlocal point cloud data enhancement algorithm, which organizes the point cloud data in the repeated area into a set of basic geometric elements (planes). The structures are registered in a unified coordinate system, and the point cloud is enhanced and denoised through two denoising processes, “out-of-plane” and “in-plane.”

Funder

Hubei Provincial Department of Education

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3