Kernel Point Convolution LSTM Networks for Radar Point Cloud Segmentation

Author:

Nobis FelixORCID,Fent Felix,Betz JohannesORCID,Lienkamp Markus

Abstract

State-of-the-art 3D object detection for autonomous driving is achieved by processing lidar sensor data with deep-learning methods. However, the detection quality of the state of the art is still far from enabling safe driving in all conditions. Additional sensor modalities need to be used to increase the confidence and robustness of the overall detection result. Researchers have recently explored radar data as an additional input source for universal 3D object detection. This paper proposes artificial neural network architectures to segment sparse radar point cloud data. Segmentation is an intermediate step towards radar object detection as a complementary concept to lidar object detection. Conceptually, we adapt Kernel Point Convolution (KPConv) layers for radar data. Additionally, we introduce a long short-term memory (LSTM) variant based on KPConv layers to make use of the information content in the time dimension of radar data. This is motivated by classical radar processing, where tracking of features over time is imperative to generate confident object proposals. We benchmark several variants of the network on the public nuScenes data set against a state-of-the-art pointnet-based approach. The performance of the networks is limited by the quality of the publicly available data. The radar data and radar-label quality is of great importance to the training and evaluation of machine learning models. Therefore, the advantages and disadvantages of the available data set, regarding its radar data, are discussed in detail. The need for a radar-focused data set for object detection is expressed. We assume that higher segmentation scores should be achievable with better-quality data for all models compared, and differences between the models should manifest more clearly. To facilitate research with additional radar data, the modular code for this research will be made available to the public.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Power Load Forecast Based on CS-LSTM Neural Network;Mathematics;2024-05-03

2. LiDAR Point Clouds in Autonomous Driving Integrated with Deep Learning: A Tech Prospect;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

3. RPC-Pillars: Radar Point Correction with Radar-PointPillars;Lecture Notes in Networks and Systems;2024

4. Improved Multi-Scale Grid Rendering of Point Clouds for Radar Object Detection Networks;2023 26th International Conference on Information Fusion (FUSION);2023-06-28

5. Multimodal Early Fusion of Automotive Sensors based on Autoencoder Network: An anchor-free approach for Vehicle 3D Detection;2023 26th International Conference on Information Fusion (FUSION);2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3