Assessment of canopy size using UAV-based point cloud analysis to detect the severity and spatial distribution of canopy decline

Author:

Ouyang Jingyun,De Bei Roberta,Collins Cassandra

Abstract

This study aimed to validate the use of UAV-based point cloud analysis to detect canopy decline severity and its spatial distribution in vineyards.A new approach to assess canopy decline, caused by Eutypa dieback-like symptoms, using unmanned aerial vehicle (UAV) remote sensing was compared with ground visual assessment in the vineyard. Canopy point cloud captured by UAV-based imagery during the growing season was analysed by a customized program to determine canopy decline severity and spatial distribution in a symptomatic Shiraz vineyard in Eden Valley, South Australia. Experienced assessors performed a ground visual assessment in the vineyard at E-L stage 15. k-means clustering was used to detect reduced canopy volume due to Eutypa dieback-like symptoms. Results from point cloud analysis showed that 12.5 % of the total canopy length in the vineyard had Eutypa dieback symptoms while the ground visual assessment detected 11.4 %. Confusion matrix results showed an accuracy of 87.4 % and a kappa coefficient of 0.43 compared with ground visual assessments. Additionally, automatic analysis of the point cloud was quicker than the ground visual assessment and generated precise geographic coordinates of the symptomatic canopy sections. Point cloud analysis can detect Eutypa dieback-like symptoms and its spatial distribution with 87.4 % accuracy, compared with the ground assessment. Similar to ground visual assessment, E-L stage 15 appears to be a suitable stage to apply point cloud analysis to make Eutypa dieback-like symptom assessments. Grapevine canopy decline, caused by various factors such as Eutypa dieback and inadequate management, can cause yield reduction and threaten vineyard longevity. Compared with tedious ground visual assessments, point cloud analysis can accelerate the assessment of canopy decline in vineyards and help with the planning of remedial practices using precise geographic coordinates of the affected sections.

Publisher

Universite de Bordeaux

Subject

Horticulture,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3