A Constrained Feature Selection Approach Based on Feature Clustering and Hypothesis Margin Maximization

Author:

Hijazi Samah1,Truong Hoang Vinh1ORCID

Affiliation:

1. Faculty of Information Technology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam

Abstract

In this paper, we propose a semisupervised feature selection approach that is based on feature clustering and hypothesis margin maximization. The aim is to improve the classification accuracy by choosing the right feature subset and to allow building more interpretable models. Our approach handles the two core aspects of feature selection, i.e., relevance and redundancy, and is divided into three steps. First, the similarity weights between features are represented by a sparse graph where each feature can be reconstructed from the sparse linear combination of the others. Second, features are then hierarchically clustered identifying groups of the most similar ones. Finally, a semisupervised margin-based objective function is optimized to select the most data discriminative feature from within each cluster, hence maximizing relevance while minimizing redundancy among features. Eventually, we empirically validate our proposed approach on multiple well-known UCI benchmark datasets in terms of classification accuracy and representation entropy, where it proved to outperform four other semisupervised and unsupervised methods and competed with two widely used supervised ones.

Funder

Ho Chi Minh City Open University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel hierarchical feature selection method based on large margin nearest neighbor learning;Neurocomputing;2022-08

2. Memory Model for Morphological Semantics of Visual Stimuli Using Sparse Distributed Representation;Applied Sciences;2021-11-15

3. Analysis of Feature Selection Techniques for Classification Problems;2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT);2021-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3