Memory Model for Morphological Semantics of Visual Stimuli Using Sparse Distributed Representation

Author:

Kang Kyuchang,Bae Changseok

Abstract

Recent achievements on CNN (convolutional neural networks) and DNN (deep neural networks) researches provide a lot of practical applications on computer vision area. However, these approaches require construction of huge size of training data for learning process. This paper tries to find a way for continual learning which does not require prior high-cost training data construction by imitating a biological memory model. We employ SDR (sparse distributed representation) for information processing and semantic memory model, which is known as a representation model of firing patterns on neurons in neocortex area. This paper proposes a novel memory model to reflect remembrance of morphological semantics of visual input stimuli. The proposed memory model considers both memory process and recall process separately. First, memory process converts input visual stimuli to sparse distributed representation, and in this process, morphological semantic of input visual stimuli can be preserved. Next, recall process can be considered by comparing sparse distributed representation of new input visual stimulus and remembered sparse distributed representations. Superposition of sparse distributed representation is used to measure similarities. Experimental results using 10,000 images in MNIST (Modified National Institute of Standards and Technology) and Fashion-MNIST data sets show that the sparse distributed representation of the proposed model efficiently keeps morphological semantic of the input visual stimuli.

Funder

Electronics and Telecommunications Research Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. A Fast Learning Algorithm for Deep Belief Nets

2. Deep learning

3. Generative adversarial nets;Goodfellow;Adv. Neural Inf. Process. Syst.,2014

4. How to Build a Brain: A Neural Architecture for Biological Cognition;Eliasmith,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3